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Abstract

This paper discusses the continuation of research

into the development of new motion cueing algorithms

first reported in 1999. In this earlier work, two viable

approaches to motion cueing were identified: the

coordinated adaptive washout algorithm or _adaptive

algorithm", and the _optimal algorithm". In this study,

a novel approach to motion cueing is discussed that

would combine features of both algorithms.

The new algorithm is formulated as a linear

optimal control problem, incorporating improved

vestibular models and an integrated visual-vestibular

motion perception model previously reported. A

control law is generated from the motion platform

states, resulting in a set of nonlinear cueing filters. The

time-varying control law requires the matrix Riccati

equation to be solved in real time. Therefore, in order

to meet the real time requirement, a neurocomputing

approach is used to solve this computationally

challenging problem.

Single degree-of-freedom responses for the

nonlinear algorithm were generated and compared to

the adaptive and optimal algorithms. Results for the

heave mode show the nonlinear algorithm producing a

motion cue with a time-varying washout, sustaining

small cues for a longer duration and washing out larger

cues more quickly. The addition of the optokinetic

influence from the integrated perception model was

shown to improve the response to a surge input,

producing a specific force response with no steady-state

washout. Improved cues are also observed for
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responses to a sway input. Yaw mode responses reveal

that the nonlinear algorithm improves the motion cues

by reducing the magnitude of negative cues.

The effectiveness of the nonlinear algorithm as

compared to the adaptive and linear optimal algorithms

will be evaluated on a motion platform, the NASA

Langley Research Center Visual Motion Simulator

(VMS), and ultimately the Cockpit Motion Facility

(CMF) with a series of pilot controlled maneuvers. A

proposed experimental procedure is discussed. The

results of this evaluation will be used to assess motion

cueing performance.

Introduction

It was reported in 19991 that two viable approaches

to motion cueing were identified. The first technique is

a modification of the coordinated washout algorithm

developed at NASA by Parrish, et al. 2, hereafter

referred to as the _adaptive algorithm". This algorithm
uses both first-and second-order linear washout filters

in conjunction with an optimization method that adjusts

the filter gains in real time by minimizing the error

between the simulated aircraft and the motion platform

responses. This methodology effectively produces a set

of nonlinear washout filters.

The second method is the _optimal algorithm"

based on that first developed by Sivan, et al), and later

implemented by Reid and Nahon. 4 This algorithm uses

higher-order filters that are determined, prior to real

time application, using optimal control methods. This

method incorporates a model of the human vestibular

system, constraining the sensation error between the

simulated aircraft and motion platform dynamics. The

authors 1 initially formulated a version of this approach

that resulted in improved motion cues, but was less

capable of tracking changes to aircraft inputs as

compared to the former approach. Therefore, a new

algorithm is desired that combines features of both the

optimal and adaptive algorithms.

The proposed algorithm is formulated as a linear

optimal control problem similar to the approach

previously reported 1, but can also be solved in real

time. Furthermore, it incorporates models of the human

vestibular sensation system, with improved semicircular

canals and otoliths models, along with an integrated

visual-vestibular perception model. A nonlinear control
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lawis implementedto generatea scalarcoefficientc_
thatisa functionof themotionplatformstates•For
largeplatformmotions,thecoefficientc_is large,
resultingin fastercontrolaction•ThematrixRiccati
equationisthensolvedinrealtimeasafunctionofc_,
resultinginthefeedbackmatrixneededtocomputethe
desiredmotioncues.In ordertomeettherealtime
requirement,a neurocomputingapproachhasbeen
chosento solvethis computationallychallenging
problem.Thestructureoftheproblemis illustratedin
Figure1.

semicircularcanalsmodelalongwithanadditionalstate
thatrepresentsthe optokineticinfluencefromthe
interactionofvisualandvestibularstimuliaspresented
intheintegratedmotionperceptionmodel•5

Thetranslationalperceivedvelocityv_p_ is then

related to the input u by

"X4-_9 : AoToX4-_9 + BoToU

V pZ : CoToX4._9 _- DoToU ,

(3)

Aircraft Pilot

Aircraft Perceptual

States u A + Error e

Simulator

States u s

Figure 1. Problem Structure of Nonlinear Cueing

Algorithm.

Algorithm Development

The algorithm is implemented in four modes: two

single-degree-of-freedom modes (yaw and heave), and

two two-degree-of-freedom modes (pitch/surge and

roll/sway). The algorithm development for the

longitudinal mode is given below• The control input u
is formulated as

(1)

where 6 is angular velocity, and a_ is the translational

acceleration, with each term respectively set equal to Ul

and u2.

The rotational perception q_ is then related to the

input u by

x1.o3 = AsccXl.o3 + BsccU

q_ = CsccX_.o_ + DsccU,
(2)

where x_.o_are the rotational perception states, and Ascc,

Bscc, Cscc, and Dscc represent in state space form the

where X4._ 9 are the translational perception states, and

AoTo, BoTo, Co_o, and Do_o includes a proposed otolith

model, 6 along with an additional state representing the

optokinetic influence.

The representations in Eqs. (2) and (3) can be

combined to form a single representation for the human

perception model:

31vo9 = AvXvo 9 + BvU

Y,E = CvXl-_9 + DvU'
(4)

where x,.o, and ypE are, respectively, the combined states

and perceived responses, and Av, P_-, Cv, and Dv

represent the perceptual models as one set of state

equations:

0 =VBscclAv=EAocAoTolBv' LBoPoJ'

0 =F ,cclovLOo o 
It is assumed that the same perceptual model can

be applied to both the pilot in the aircraft and the pilot

in the simulator as shown in Figure 1. We define the

pilot perceptual error e, resulting in

"xo= AvX ° + BvU s - BvU A

e = CvX _ + DvU s - DvUA,
(5)

where us and _1 A represent the simulator and aircraft

inputs as given in Eqn. (1).

It is also necessary for the control algorithm to

explicitly access motion states such as linear velocity

and displacement of the motion platform that appear in

the cost function• For this purpose, additional terms are

included in the state equations:

2
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x. = A.x. + B.u_, (6)

where x, represents the additional motion platform
states:

and are related to the simulator input us by

A, = , B, = .
0 0

0 0

The aircraft input UA consists of filtered white noise,
and can be expressed as

x,, =AnX n +BnW
(7)

U A = X n ,

where Xnare the filtered white noise states, w represents
white noise, with An and Bn given as

A I-:l 0 I I°)ll
n _ , Bn = ,

--(92 (92

where (91 and (92 are the first-order filter break

frequencies for each degree-of-freedom.

The state equations given in Eqns. (5), (6), and (7)

can be combined to form the desired system equation

= Ax + Bu s + Hw
(s)

y=[e x,]T = Cx + Dus,

where y is the desired output, and x = [xo x, xn]T

represents the combined states. The combined system
matrices A, B, C, D, and H are then given by

A =

C =

Av0-BY10 A. 0 , B= ,

0 0 A n

-Cv0 EOo.]V , D=

0 I

n =

A cost function J is then defined as

j=E{ItI( T T )}
e_Qe+x.R.x. +usRu sdt , (9)

to

where E{ } is the mathematical mean of statistical
variable, Q and R, are positive semi-definite matrices,

and R is a positive definite matrix. Eqn. (9) implies
that three variables are to be constrained in the cost

function: the sensation error e along with the additional
terms x. and us which together define the linear and

angular motion of the platform. The cost function
constrains both the sensation error and the platform
motion.

The system equation and cost function can be
transformed to the standard optimal control form as
shown in Kwakemaak and Sivan 7 and noted in Reid

and Nahon 4by the following equations:

= A'x + Bu' + Hw

Jl: E{IplI(xTR:x_-uITR2ul)'} '

(10)

where

A' = A- BR;IRT2, u' :u s + R;IRT2x,

R' 1= R_ - R_2R;_RT2, R_ = CTGC,

R_2 =CTGD, R 2 =R+DTGD, G=diag[Q,R_].

The cost function in Eq. (10) is augmented with an

additional term e 2_ proposed by Anderson and
Moore: 8

Jl: E{IplI_2OLt(xTR:x_-uITR2ul)d[} '
(11)

where R' 1 is positive definite, R 2 is positive semi-

definite, and the scalar coefficient (x represents a

minimum degree of stability in the closed-loop system
where (x > 0.

3
American Institute of Aeronautics and Astronautics



Anderson and Moore 8 show that the system

equation and cost function can be transformed to

eliminate the exponential term, resulting in

i = (A' +c_I)i + Bfi + H'w

_ f_, (iTR, _ _T _ }J'=E[.L0 \ , +u R2u)dt ,

(12)

where i = e_x and 6 = e_u ' .

We now wish to compute the simulator control

input us that minimizes the cost function given in Eqn.

(12). Anderson and Moore 8 note that for this problem,

A' + cd is positive definite, (A' + cd, B) is

controllable and (A' + cd, R', ) is observable. Under

these conditions, the cost function is minimized when

u s = - K(c_)x, (13)

where K((x) :R:(BTp((x) + R,2), and P(o_)isthe

solution of the algebraic Riccati equation

(A' + cd)P (c_) + P (c_)(A' + cd)

- P ((x) BR_BTp ((x) + R'_ = 0

(14)

The feedback matrix K(c 0 is partitioned corresponding

to the partition of x in Eq. (8):

(15)

Noting that Xn = UA, remove the states corresponding to

the Xn partition from Eqn. (13):

[Sv]+ U s ,

B.
(16)

and substituting Eq. (15) into Eq. (16) results in

Ex]I=IAv-BvK_((x) -BvK2((x) llxel
L -B.K, (c_) A,- B.K_ (c_)/L /

+ I-BY (I + K' ((_))]u_.
L -B.K_ (c()

(17)

A nonlinear control law is chosen to make c_

dependent upon the system states:

(x = x_Q2x,, (18)

where Q_ is a weighting matrix that is at least positive

semi-definite. As the system states increase in

magnitude, i.e. with large platform motions, then c_

increases, resulting in faster control action and

increased system stability. For small responses there

will be limited control action. The feedback matrix

K(c 0 is then determined by solving the Riccati equation

of Eq. (14) in real time as a function of c_.

Real Time Solution of the Riccati Equation

Solving the nonlinear Riccati equation in Eqn. (14)

is a computational challenge in real time as a new

solution is required at each time step. Since the

solution to the preceding time step is available, it is

advantageous to use this as an initial solution when

computing the solution for the current time step, thus

reducing the computational burden. The initial Riccati

equation solution to the linear optimal algorithm that is

computed off-line in MATLAB is available and can be

used as the initial solution for the first time step. To

this end we desire a technique that assumes the initial

solution is "close" to the computational solution at a

given time step.

Two types of techniques were investigated for

implementation with the nonlinear algorithm.

Blackburn 9 developed a method of solution by using a

Newton-Raphson iteration. With this technique,

computation of the Jacobian matrix as a Kronecker

product is required along with matrix inversion, which

can result in a singular solution for an ill-conditioned

system. Neurocompnting approaches suggested by

Wang and Wu 1° and Ham and Collins 11 eliminate these

operations, taking advantage of the matrix structure

associated with the algorithm, and thus reducing the

computational burden. For fiaese reasons, the

neurocomputing approaches were further evaluated.

The neurocomputing approach proposed by Ham
and Collins 11 uses a structured neural network for

obtaining the Riccati equation computational solution P

as shown in Figure 2.
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z(,)
v(,)

Figure 2. Structured Neural Network for Solving the

Riccati Equation.

The error signal v(t) in Figure 2 is given as

v(,) =

[P(t)sP(t)- A:TP(t)-P(t)A' - R;]z(t), (19)

where S=BR_B, A' =A'+cd, and z(t) is an

excitatory input signal. An energy function is then

as 1 V 2formulated E(P) =211 112 (where 11"112 is the

Euclidean norm), which is minimized using the method

of steepest descent, resulting in a system of first-order

matrix differential equations

P(,) =

gEA'v(t)z(t) +v(,)zT(t)A:- V(t)pT(')S_,

(20)

where g > 0 is the learning rate parameter, and

p(t) = P(t)z(t)as shown in Figure 2. In discrete-

time form (the time step At is absorbed into the learning

rate g), the learning rule for each training step k
becomes

P(k + 1) = P(k) + gAP(k), (21)

with the update term AP (k) given as

EA'v(t)z(t)+v T(t)A:- V(t)pT(t)S_.

Ham and Collins 11 report that even though the

update term is not symmetric, the learning rule will still

converge to the positive definite, symmetric solution.

They note, however, that performing an additional

computation resulting in a symmetric update term will

improve convergence:

P(k+I)=P(k)+@EAP(k)+AP_(k)3. (22)

Ham and Collins 11 note that the external excitatory

vector input signals z(t) are a set of linearly

independent bi-polar vectors given as

Z (1) =[1 -1 .... 1],

z(2)=[-i 1 .... 1],
(23)

z (_') = [-1 -1 --. 1],

where each vector z(_)is presented once to the neural

network in an iteration, i.e. for one iteration there is a

total of n presentations of the training step given in

Eqn. (22), with the solution P(k) updated with each

training step.

Algorithm Evaluation

Comparisons of single degree-of-freedom

responses for the nonlinear algorithm are made with the

linear optimal algorithm and the adaptive algorithm.

Comparisons are made of both specific force cues at the

pilot's head and angular velocity cues, as well as the

linear and angular displacement of the simulator.

WU 12 developed an algorithm that scales the

aircraft inputs by a third-order polynomial, maximizing

the available motion cues while remaining within the

operational limits of the motion system. In order to

determine the polynomial gain coefficients for each

degree-of-freedom that result in the most desired pilot

performance, a series of pilot controlled maneuvers

were executed with the adaptive and linear optimal

algorithms on the NASA Langley Visual Motion

Simulator (VMS). A series of maneuvers were first

executed for each algorithm with the nonlinear gain

coefficients determined prior to testing. Individual gain

coefficients for each degree-of-freedom were then

adjusted until the desired pilot perception and

performance were reached, while ensuring that the

simulator motion platform limits were not exceeded.

Using these results, coefficients for the nonlinear

algorithm were then tuned separately to produce the

desired performance within the motion platform limits.

For the heave mode, the off-line solution of the

Riccati equation initially produced one closed-loop

eigenvalue of zero, which resulted in the linear optimal

control weights being very difficult to tune. This

5
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eigenvaluewasa resultof the inclusionof the
optokineticchannelin thealgorithmformulation;the
formulationbasedonthevestibularmodelalonedidnot
produceazeroeigenvalue.A statereductionusingthe
MATLABfunction"minreal"wasperformedonthe
perceptualmodel,removingonestateandin turn
eliminatingtheclosed-loopeigenvalueof zero. The
linearoptimalcontrolweightscouldthenbetunedto
producethedesiredspecificforcecue;matricesQand
Rdwereincreasedto producethedesiredonsetramp
andmagnitudewhilethefilteredwhitenoisebreak
frequencyco was increased to 20_ rad/s to eliminate

false cues. The heave mode responses for a pulse input

of 1 m/s 2 magnitude and 10-second duration are shown

in Figure 3.

Z-Axis Specific Force at Pilot Head
-9.6 , , ,

i-9;L- - ........... : ............. 1
£-9.
,?
,_o 07_
"_ -9.9 _ , V 113 Adaptive Algorithm

I ' I 4_ OptimalAlgorithm
09 -10 I [ _ NonlinearAlgorithm

O 5 10 15 20

Simulator Z-Displacement

o2 : :
v 0.1 i

c3

_4 -O.1

-O12[ i "'_
O 5 10 15 20

Time(sec)

Figure 3. Algorithm Responses to Heave Pulse Input

of 1 m/s 2, 10-Second Duration.

A learning rate parameter g = 2 x 10 -6 is used in

computing the real-time solution of the Riccati

equation. The onset ramp is very close to that of the

adaptive and optimal algorithms, with a slightly larger

peak magnitude. The cue is sustained for a longer

duration, resulting in 62 percent more z-axis

displacement as compared to the linear optimal

algorithm. The negative cue at the end of the pulse is

twice the magnitude as the adaptive algorithm response.

Figure 4 compares responses with the pulse

magnitude increased to 3 m/s 2. The nonlinear

algorithm response washes out faster due to the

nonlinear effects generated from the Riccati equation

solution. A larger z-axis displacement still results, but

reduced to 25 percent greater than the linear optimal

algorithm. The negative cue at the end of the pulse is

slightly smaller than the optimal algorithm response,

but is much larger than the negative cue that results

from the adaptive algorithm.

Z-Axis Specific Force at Pilot Head

k L ' '-96 :
o_-981_, _ _ __'____ _£

_ -_ .... '_ I-- --Air'craft (Scaled byO.l_

.'E_-- -10 k • _f I [] Adaptive Algorithm

', _ I ,I: Optimal Algorithm

03 10 2_ I (> NonlinearAlgorithm
O 5 10 15 20

Simulator Z-Displacement
0.5

-0.
O 5 10 15 20

]]me (sec)

Figure 4. Algorithm Responses to Heave Pulse Input

of 3 m/s 2, 10-Second Duration.

For the two-degree-of-freedom longitudinal mode,

the initial formulation with the integrated perception

model resulted in a higher-order system (15th-order)

that is much larger than either heave or yaw (5%order).

Two closed-loop eigenvalues of zero resulted from the

off-line solution of the Riccati equation. The first

originated from the additional simulator state 0. The

second resulted from the optokinetic channel for the

translational degree-of-freedom. Removal of the

additional platform state combined with a state

reduction of the perceptual model eliminates the two

closed-loop eigenvalues of zero, reducing the system to

1 lth-order.

Figure 5 compares the algorithm responses to an

aircraft surge ramp to step input. A learning rate

parameter g = 2 x 10 -6 is used in computing the real-

time solution of the Riccati equation. Note that the

specific force response for the nonlinear algorithm

increases to a larger magnitude after onset and does not

wash out as a function of time, resulting from the

steady-state tilt angle sustaining a constant magnitude.

A small increase in the angular velocity (tilt) rate is also

observed.

Figure 6 compares the responses for this surge cue

from the integrated perception model. The sensed

specific force responses show the nonlinear algorithm

closely tracks the shape of the sensed response from the

aircraft.
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X-Axis Specific Force at Pilot Head

1/ ....
E ....

o ' ' ' Aircraft,._o4//  d 0,w ,0or,hm
"o II / _F Optimal Algorithm
_- IV G NonlinearAlgorithm

03 -0.5 1 L
0 2 4 6 8 10

Angular Velocity q

i
0 2 4 6 8 10

Time (sec)

Figure 5. Algorithm Responses to Surge Ramp to Step

Input of 1 m/s 2, 3 m/s2/s Slope.

X-Axis Sensed Specific Force at Pilot Head

. 1 ....

o .*. _ " ....... " _ _ _

• / I Aircraft
I\/ I [] AdaptiveAIgorithm
I - I -'4- Optimal Algorithm

_ _0.5 I I 0 NonlinearAlgorithm

_) 0 2 4 6 8 10

X-Axis Perceived Velocity at Pilot Head

£

g_-
0 2 4 6 8 10

Time (sec)

Figure 6. Integrated Perception Model Responses to

Surge Cues of Figure 5.

algorithm formulation. A learning rate parameter p = 2

x 10 -_ was again used.

Y-Axis Specific Force at Pilot Head

15 1 - - - _ ...... [ Aircraft (Scaled by O.5) [I
/ / _ / [] AdaptiveAIgorithm I/

_'_ 11 // _ \_'-, I_ Optimal AIgorithm I1

o 0.5 ...............
o

2 4 6 8 10

Angular Velocity p

5 ....

<

-5
0 2 4 6 8 10

q]me (sec)

Figure 7. Algorithm Responses to Sway Half Sine

Input of 3 m/s 2, 5-Second Duration.

Note that the specific force cue generated by the

adaptive algorithm has some significant distortion. A

false cue is generated at onset, resulting in a noticeable

lag in the motion cue response. A large peak

magnitude is reached, but nearly one second after the

aircraft input reached its peak. A large residual specific

force cue remains for about three seconds after the

aircraft input ends. The response generated by the

linear optimal algorithm shows no negative cue at the

onset, a well-shaped half sine response with a less

noticeable lag, and much less residual specific force

cue. The nonlinear algorithm results in a peak specific

force cue that is 15 percent larger than the linear

optimal algorithm, with even less lag and almost no

residual specific force cue after the half sine input ends.

The optimal algorithm produces about the same

onset as the nonlinear algorithm, but results in

noticeably less sensed response, especially for the first

few seconds after the peak magnitude is reached. The

perceived velocity responses show larger magnitudes

for the nonlinear algorithm, increasing to 15 percent

greater magnitude after 10 seconds. The adaptive

algorithm shows a negative, or false specific force cue

sensed at the onset that results in a subsequent lag and a

reduction in the perceived velocity for several seconds.

Figure 7 compares the algorithm responses to an

aircraft sway half sine input. As with the longitudinal

mode, a state reduction was performed on the integrated

perceptual model to eliminate one zero eigenvalue, and

the additional simulator state d? was removed from the

Figure 8 compares the responses for these sway

cues from the integrated perception model. As

expected, the nonlinear algorithm peaks to a larger

sensed specific force as compared to the optimal

algorithm, resulting in a larger perceived velocity.

After five seconds the conflict between the vestibular

and visual stimuli is reduced, resulting in a gradual

acceptance of the visual cues governed by the

optokinetic influence in the model. The problems noted

with the adaptive algorithm are evident; the false cue

and delayed peak are noticeable along with excessive

sensed and perceived responses obselved in the last two

seconds of the pulse input. In all three algorithms, the

magnitude of the vestibular cues eliminates the latency

to onset of linealvection that would occur with visual

stimuli alone.

7
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Y-Axis Sensed Specific Force at Pilot Head
2

_ ' ' [ Aircraft 1
¢_ I y/ "_ , , / [] AdaptiveAIgorithm /

1_ ,_ _ , , J ,t- OptimalAIgorithm /

_o / / _ _ ' / 0 NonlinearAIgorithm/

0 2 4 6 8 10
09

Y-Axis Perceived Velocity at Pilot Head

' ,

>.

£

g_-
0 2 4 6 8 10

Time (sec)

Figure 8. Integrated Perception Model Responses to

Sway Cues of Figure 5.

The yaw mode responses for an angular

acceleration doublet of 0.1 rad/s 2 magnitude and 5-

second duration are shown in Figure 9. A learning rate

p = 2 x 10 -6 is used in computing the real-time solution

of the Riccati equation. Note that the angular velocity

cue near the end of the aircraft input is reduced for the

nonlinear algorithm. The yaw angle displacement

command returns to the neutral state (zero

displacement) in less than twenty seconds, while the

linear optimal algorithm requires more time to return to

the neutral state.

Angular Velocity r
15 , , ,

l _ ' , --Aircraft

v'l°/ / \ ' ' / @ OptimalAIgorithm I
, , [] Adaptive Algorithm

/ / \ ' ' / 0 NonlinearAIgorithm I

,<

0 5 10 15 20

Simulator Angle Psi

0)

0 5 10 15 20

Time (sec)

Figure 9. Algorithm Responses to Yaw Doublet of 0.1

rad/s 2 and 5-Second Duration.

Due to the tilt coordination limit that is needed for

responses to surge and sway inputs, separate modes are

needed respectively for both pitch and roll cues. For

both pitch and roll inputs the linear filter frequency

characteristics are very close to a unity-gain filter. No

additional benefit resulted from solving the Riccati

equation in real time. For these reasons, the

formulations shown in Eqns. (1) through (23) are

replaced by unity-gain filters for both pitch and roll
modes.

Figure 10 shows the roll responses for an angular

acceleration doublet of 0.1 rad/s 2 magnitude and 5-

second duration. Note that the specific force response

for the nonlinear algorithm is larger in magnitude (and

closer to the aircraft response) as compared to the

optimal and adaptive algorithm responses. Pitch

responses for the nonlinear algorithm are similar to

those previously reported in 1999.1

Angular Velocity

15[ _ , Aircraft
%" 10 ' [] Adaptive Algorithm

/ / ".' , { Optimal Algorithm

>_" 5_ ' ,'_' (> Nonlinear,Algorithm

-5 _

0 2 4 6 8 10

Y-Axis Specific Force at Pilot Head

11° ' ii'iiiii'iiiii_iiiii
,9 = =

I _ 12 ......... ; -- I _ I I 7--_- - -

c__3
0 2 4 6 8 10

q]me (sec)

Figure 10. Algorithm Responses to Roll Doublet of
0.1 rad/s 2 and 5-Second Duration.

The systems of first-order differential equations

given for the neurocomputing solver in Eqn. (22)

require a numerical integration algorithm. A series of

algorithms (Euler, 2ha-order Adams-Bashforth, 2 nd- and

4th-order Runge-Kutta) were evaluated. No

improvement was noticed with the higher-order

methods as compared to the Euler method. However,

for the system state equations in Eqn. (17), the Euler

method was found unstable for small sampling

frequencies; the 2ha-order Runge-Kutta method resulted

in stable results for sample rates as small as 32 Hz.

The responses using a second neurocomputing

solver proposed by Wang and Wu 10 are sensitive to the

magnitude and stiffness of the closed-loop eigenvalues,

with the responses dependent upon the choice and

structure of the activation functions. The approach

proposed by Ham and Collins 11 utilizes a structured

network without activation functions; the responses are

8
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more robustwith respectto the closed-loop
eigenvalues.Thissolveryieldsimprovedresponsesand
convergencewithlesscomputationalburden;onlyone
solveriterationisrequiredpertimestep.

Piloted Performance Testing

The effectiveness of the nonlinear algorithm as

compared to the adaptive and optimal algorithms will

be assessed in piloted simulations. Testing will be

conducted on the NASA Langley Research Center

Visual Motion Simulator (VMS), and ultimately on a

new motion system, the Cockpit Motion Facility

(CMF). 1 Preliminary testing has been conducted on flae

VMS with the adaptive and optimal algorithms. As a

result of these preliminary tests the polynomial scaling

coefficients were adjusted for each degree-of-freedom.

Similar testing to adjust the polynomial scaling

coefficients will be performed for the nonlinear

algorithm.

A group of four pilots will execute a series of

maneuvers on the simulator. For each maneuver the

simulated aircraft dynamics is generated from manual

pilot control. The pilot control inputs (throttle,

elevator, aileron, and rudder) will be sampled for each

maneuver. Accelerometer measurements for specific

force and angular acceleration at the platform motion-

base centroid in six degrees-of-freedom will be

recorded for each maneuver.

robust with respect to the closed-loop eigenvalues, with

less computational burden as compared to a second

neurocomputing solver.

Results for the heave mode show the nonlinear

algorithm producing a motion cue with a time-varying

washout, sustaining small cues for a longer duration

and washing out larger cues more quickly. The

addition of the optokinetic influence from the integrated

perception model was shown to improve flae response to

a surge input, producing a specific force response with

no steady-state washout. Improved cues are also

observed for responses to a sway input. Yaw mode

responses reveal that the nonlinear algorithm improves

the motion cues by reducing the magnitude of negative

cues.

The nonlinear algorithm will first be implemented

on the Langley Visual Motion Simulator, and then on

the Cockpit Motion Facility. As was recently done with

the adaptive and optimal algorithms, the polynomial

scaling coefficients will be tuned to produce the most

desired pilot performance. From piloted simulations,

a metric will be derived that will demonstrate the

effectiveness of the new algorithm in simulating aircraft

pilot performance.

Pilot perception, as computed from the vestibular

and integrated perception models, will be recorded for

each maneuver. From the pilot control inputs, power

spectral density, crossover frequency, and phase margin

will be analyzed to determine the effect of motion

platform response upon pilot performance, comparing

results for the various algorithms. The pilot will also

evaluate each maneuver separately using the Cooper-

Harper rating scale. Work is currently in progress to

develop a performance metric that will utilize these data

and benchmark the fidelity of each algorithm in

replicating pilot performance and workload of actual

aircraft maneuvers.

Conclusions

A nonlinear motion cueing algorithm was

developed that combines features of the adaptive and

optimal algorithms, and incorporates the vestibular and

integrated perception models. A nonlinear control law

was proposed that requires the solution of the Riccati

equation in real time. The neurocomputing approach

implemented for this task yields responses that are
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